Back to Search Start Over

Effect of Capacitor Voltage Ripples on Submodule Active Power Control Limits of Cascaded Multilevel Converters.

Authors :
Liang, Gaowen
Tafti, Hossein Dehghani
Farivar, Glen G.
Pou, Josep
Townsend, Christopher D.
Konstantinou, Georgios
Ceballos, Salvador
Source :
IEEE Transactions on Industrial Electronics; Jun2022, Vol. 69 Issue 6, p5952-5961, 10p
Publication Year :
2022

Abstract

In the operation of cascaded H-bridge converters and modular multilevel converters with energy storage or renewable power resources, unbalanced active power distribution among the submodules (SMs) is unavoidable. Depending on the operating conditions, there are certain upper and lower limits on the active power that can be processed by a single SM or a subset of SMs. The control system needs to restrict the SM power references to these limits, hence, accurate knowledge of the power limits is important. In existing methods to derive the power limits, the SM capacitor voltages are assumed to have negligible ripples, whereas in practice the ripples can be considerable. This article analyzes the effect of capacitor voltage ripples on the SM active power control limits and highlights the importance of considering the ripple effect. A methodology is proposed to accurately incorporate capacitor voltage ripples in the derivation of SM active power control limits. Simulation and experimental results are provided to evaluate the effectiveness of the proposed methodology. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02780046
Volume :
69
Issue :
6
Database :
Complementary Index
Journal :
IEEE Transactions on Industrial Electronics
Publication Type :
Academic Journal
Accession number :
155108739
Full Text :
https://doi.org/10.1109/TIE.2021.3091934