Back to Search Start Over

Biofilm formation under high shear stress increases resilience to chemical and mechanical challenges.

Authors :
Simões, L. C.
Gomes, I. B.
Sousa, H.
Borges, A.
Simões, M.
Source :
Biofouling; Jan 2022, Vol. 38 Issue 1, p1-12, 12p
Publication Year :
2022

Abstract

The effect that the hydrodynamic conditions under which biofilms are formed has on their persistence is still unknown. This study assessed the behaviour of Pseudomonas fluorescens biofilms, formed on stainless steel under different shear stress ( τ w ) conditions (1, 2 and 4 Pa), to chemical (benzalkonium chloride – BAC, glutaraldehyde – GLUT and sodium hypochlorite – SHC) and mechanical (20 Pa) treatments (alone and combined). The biofilms formed under different τ w showed different structural characteristics. Those formed under a higher τ w were invariably more tolerant to chemical and mechanical stresses. SHC was the biocide which caused the highest biofilm killing and removal, followed by BAC. The sequential exposure to biocides and mechanical stress was found to be insufficient for effective biofilm control. A basal layer containing biofilm cells mostly in a viable state remained on the surface of the cylinders, particularly for the 2 and 4 Pa-generated biofilms. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08927014
Volume :
38
Issue :
1
Database :
Complementary Index
Journal :
Biofouling
Publication Type :
Academic Journal
Accession number :
155053387
Full Text :
https://doi.org/10.1080/08927014.2021.2006189