Back to Search Start Over

Capillary‐size flow of human blood plasma: Revealing hidden elasticity and scale dependence.

Authors :
Windberger, Ursula
Baroni, Patrick
Noirez, Laurence
Source :
Journal of Biomedical Materials Research, Part A; Feb2022, Vol. 110 Issue 2, p298-303, 6p
Publication Year :
2022

Abstract

The dynamical mechanical analysis of blood generally uses models inspired by conventional flows, assuming scale‐independent homogeneous flows and without considering fluid–surface boundary interactions. The present experimental study highlights the relevance of using an approach in line with physiological reality providing a strong interaction between the fluid and the boundary interface. New dynamic properties of human blood plasma are found: a finite shear elastic response (solid‐like property) is identified in nearly static conditions, which also depends on the scale (being reinforced at small scales). The elastic behavior is confirmed by the induction, without heat transfer, of local hot and cold thermodynamic states evidencing a thermo‐mechanical coupling in blood plasma so far known only in elastic materials. This finding opens new routes for medical diagnosis and device fabrication. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15493296
Volume :
110
Issue :
2
Database :
Complementary Index
Journal :
Journal of Biomedical Materials Research, Part A
Publication Type :
Academic Journal
Accession number :
154885393
Full Text :
https://doi.org/10.1002/jbm.a.37286