Back to Search Start Over

Colocalization of Wnt/β-Catenin and ACTH Signaling Pathways and Paracrine Regulation in Aldosterone-Producing Adenoma.

Authors :
De Sousa, Kelly
Abdellatif, Alaa B.
Giscos-Douriez, Isabelle
Meatchi, Tchao
Amar, Laurence
Fernandes-Rosa, Fabio L.
Boulkroun, Sheerazed
Zennaro, Maria-Christina
Source :
Journal of Clinical Endocrinology & Metabolism; Feb2022, Vol. 107 Issue 2, p419-434, 16p
Publication Year :
2022

Abstract

Context: Aldosterone-producing adenomas (APAs) are a common cause of primary aldosteronism (PA). Despite the discovery of somatic mutations in APA and the characterization of multiple factors regulating adrenal differentiation and function, the sequence of events leading to APA formation remains to be determined. Objective: We investigated the role of Wnt/β-catenin and adrenocorticotropin signaling, as well as elements of paracrine regulation of aldosterone biosynthesis in adrenals with APA and their relationship to intratumoral heterogeneity and mutational status. Methods: We analyzed the expression of aldosterone-synthase (CYP11B2), CYP17A1, β-catenin, melanocortin type 2 receptor (MC2R), phosphorlyated cAMP response element-binding protein (pCREB), tryptase, S100, CD34 by multiplex immunofluorescence, and immunohistochemistry-guided reverse transcription–quantitative polymerase chain reaction. Eleven adrenals with APA and 1 with micronodular hyperplasia from patients with PA were analyzed. Main outcome measures included localization of CYP11B2, CYP17A1, β-catenin, MC2R, pCREB, tryptase, S100, CD34 in APA and aldosterone-producing cell clusters (APCCs). Results: Immunofluorescence revealed abundant mast cells and a dense vascular network in APA, independent of mutational status. Within APA, mast cells were localized in areas expressing CYP11B2 and were rarely colocalized with nerve fibers, suggesting that their degranulation is not controlled by innervation. In these same areas, ß-catenin was activated, suggesting a zona glomerulosa cell identity. In heterogeneous APA with KCNJ5 mutations, MC2R and vascular endothelial growth factor A expression was higher in areas expressing CYP11B2. A similar pattern was observed in APCC, with high expression of CYP11B2, activated β-catenin, and numerous mast cells. Conclusion: Our results suggest that aldosterone-producing structures in adrenals with APA share common molecular characteristics and cellular environment, despite different mutation status, suggesting common developmental mechanisms. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0021972X
Volume :
107
Issue :
2
Database :
Complementary Index
Journal :
Journal of Clinical Endocrinology & Metabolism
Publication Type :
Academic Journal
Accession number :
154836281
Full Text :
https://doi.org/10.1210/clinem/dgab707