Back to Search Start Over

Fast Globally Optimal Transmit Antenna Selection and Resource Allocation Scheme in mmWave D2D Networks.

Authors :
Yazdani, Omid
Monemi, Mehdi
Mirjalily, Ghasem
Source :
IEEE Transactions on Mobile Computing; Feb2022, Vol. 21 Issue 2, p573-584, 12p
Publication Year :
2022

Abstract

Transmit antenna selection (TAS) at base station has been widely studied and employed in many communication networks (such as those using massive multiple-input multiple-output (MIMO) systems). Thanks to the small size of microstrip antenna elements applicable to millimeter-wave (mmWave) frequencies, the implementation of TAS in small user equipments (UEs) employing switchable directional antennas is recently becoming popular. In this paper, we consider device-to-device (D2D) communications underlaying a cellular network wherein each D2D UE is equipped with switchable transmit antennas. By employing Generalized Bender’s Decomposition (GBD) algorithm, we obtained the solution to the problem of globally optimal transmit antenna selection and channel allocation to D2D UEs together with transmit powers of cellular and D2D UEs. Although we reformulated the non-convex primal subproblem of the proposed GBD-based method into convex form, we further managed to obtain the corresponding closed-form solution through analytical manipulations; this extensively increased (at least 60 times) the execution speed of the proposed method as shown in the simulation results. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15361233
Volume :
21
Issue :
2
Database :
Complementary Index
Journal :
IEEE Transactions on Mobile Computing
Publication Type :
Academic Journal
Accession number :
154801102
Full Text :
https://doi.org/10.1109/TMC.2020.3009183