Back to Search Start Over

Silicon Mitigates Negative Impacts of Drought and UV-B Radiation in Plants.

Authors :
Mavrič Čermelj, Anja
Golob, Aleksandra
Vogel-Mikuš, Katarina
Germ, Mateja
Source :
Plants (2223-7747); Jan2022, Vol. 11 Issue 1, p91, 1p
Publication Year :
2022

Abstract

Due to climate change, plants are being more adversely affected by heatwaves, floods, droughts, and increased temperatures and UV radiation. This review focuses on enhanced UV-B radiation and drought, and mitigation of their adverse effects through silicon addition. Studies on UV-B stress and addition of silicon or silicon nanoparticles have been reported for crop plants including rice, wheat, and soybean. These have shown that addition of silicon to plants under UV-B radiation stress increases the contents of chlorophyll, soluble sugars, anthocyanins, flavonoids, and UV-absorbing and antioxidant compounds. Silicon also affects photosynthesis rate, proline content, metal toxicity, and lipid peroxidation. Drought is a stress factor that affects normal plant growth and development. It has been frequently reported that silicon can reduce stress caused by different abiotic factors, including drought. For example, under drought stress, silicon increases ascorbate peroxidase activity, total soluble sugars content, relative water content, and photosynthetic rate. Silicon also decreases peroxidase, catalase, and superoxide dismutase activities, and malondialdehyde content. The effects of silicon on drought and concurrently UV-B stressed plants has not yet been studied in detail, but initial studies show some stress mitigation by silicon. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22237747
Volume :
11
Issue :
1
Database :
Complementary Index
Journal :
Plants (2223-7747)
Publication Type :
Academic Journal
Accession number :
154586278
Full Text :
https://doi.org/10.3390/plants11010091