Back to Search Start Over

A scSE-LinkNet Deep Learning Model for Daytime Sea Fog Detection.

Authors :
Guo, Xiaofei
Wan, Jianhua
Liu, Shanwei
Xu, Mingming
Sheng, Hui
Yasir, Muhammad
Source :
Remote Sensing; Dec2021, Vol. 13 Issue 24, p5163-N.PAG, 1p
Publication Year :
2021

Abstract

Sea fog is a precarious weather disaster affecting transportation on the sea. The accuracy of the threshold method for sea fog detection is limited by time and region. In comparison, the deep learning method learns features of objects through different network layers and can therefore accurately extract fog data and is less affected by temporal and spatial factors. This study proposes a scSE-LinkNet model for daytime sea fog detection that leverages residual blocks to encoder feature maps and attention module to learn the features of sea fog data by considering spectral and spatial information of nodes. With the help of satellite radar data from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a ground sample database was extracted from Moderate Resolution Imaging Spectroradiometer (MODIS) L1B data. The scSE-LinkNet was trained on the training set, and quantitative evaluation was performed on the test set. Results showed the probability of detection (POD), false alarm rate (FAR), critical success index (CSI), and Heidke skill scores (HSS) were 0.924, 0.143, 0.800, and 0.864, respectively. Compared with other neural networks (FCN, U-Net, and LinkNet), the CSI of scSE-LinkNet was improved, with a maximum increase of nearly 8%. Moreover, the sea fog detection results were consistent with the measured data and CALIOP products. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
13
Issue :
24
Database :
Complementary Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
154458447
Full Text :
https://doi.org/10.3390/rs13245163