Back to Search Start Over

Strategies to Increase Prediction Accuracy in Genomic Selection of Complex Traits in Alfalfa (Medicago sativa L.).

Authors :
Medina, Cesar A.
Kaur, Harpreet
Ray, Ian
Yu, Long-Xi
Source :
Cells (2073-4409); Dec2021, Vol. 10 Issue 12, p3372-3372, 1p
Publication Year :
2021

Abstract

Agronomic traits such as biomass yield and abiotic stress tolerance are genetically complex and challenging to improve through conventional breeding approaches. Genomic selection (GS) is an alternative approach in which genome-wide markers are used to determine the genomic estimated breeding value (GEBV) of individuals in a population. In alfalfa (Medicago sativa L.), previous results indicated that low to moderate prediction accuracy values (<70%) were obtained in complex traits, such as yield and abiotic stress resistance. There is a need to increase the prediction value in order to employ GS in breeding programs. In this paper we reviewed different statistic models and their applications in polyploid crops, such as alfalfa and potato. Specifically, we used empirical data affiliated with alfalfa yield under salt stress to investigate approaches that use DNA marker importance values derived from machine learning models, and genome-wide association studies (GWAS) of marker-trait association scores based on different GWASpoly models, in weighted GBLUP analyses. This approach increased prediction accuracies from 50% to more than 80% for alfalfa yield under salt stress. Finally, we expended the weighted GBLUP approach to potato and analyzed 13 phenotypic traits and obtained similar results. This is the first report on alfalfa to use variable importance and GWAS-assisted approaches to increase the prediction accuracy of GS, thus helping to select superior alfalfa lines based on their GEBVs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734409
Volume :
10
Issue :
12
Database :
Complementary Index
Journal :
Cells (2073-4409)
Publication Type :
Academic Journal
Accession number :
154343965
Full Text :
https://doi.org/10.3390/cells10123372