Back to Search Start Over

Antigen-Capturing Mesoporous Silica Nanoparticles Enhance the Radiation-Induced Abscopal Effect in Murine Hepatocellular Carcinoma Hepa1-6 Models.

Authors :
Yang, Kyungmi
Choi, Changhoon
Cho, Hayeong
Ahn, Won-Gyun
Kim, Shin-Yeong
Shin, Sung-Won
Kim, Yeeun
Jang, Taekyu
Lee, Nohyun
Park, Hee Chul
Source :
Pharmaceutics; Nov2021, Vol. 13 Issue 11, p1811, 1p
Publication Year :
2021

Abstract

Immunomodulation by radiotherapy (RT) is an emerging strategy for improving cancer immunotherapy. Nanomaterials have been employed as innovative tools for cancer therapy. This study aimed to investigate whether mesoporous silica nanoparticles (MSNs) enhance RT-mediated local tumor control and the abscopal effect by stimulating anti-cancer immunity. Hepa1-6 murine hepatocellular carcinoma syngeneic models and immunophenotyping with flow cytometry were used to evaluate the immune responses. When mice harboring bilateral tumors received 8 Gy of X-rays on a single tumor, the direct injection of MSNs into irradiated tumors enhanced the growth inhibition of irradiated and unirradiated contralateral tumors. MSNs enhanced RT-induced tumor infiltration of cytotoxic T cells on both sides and suppressed RT-enhanced infiltration of regulatory T cells. The administration of MSNs pre-incubated with irradiated cell-conditioned medium enhanced the anti-tumor effect of anti-PD1 compared to the as-synthesized MSNs. Intracellular uptake of MSNs activated JAWS II dendritic cells (DCs), which were consistently observed in DCs in tumor-draining lymph nodes (TDLNs). Our findings suggest that MSNs may capture tumor antigens released after RT, which is followed by DC maturation in TDLNs and infiltration of cytotoxic T cells in tumors, thereby leading to systemic tumor regression. Our results suggest that MSNs can be applied as an adjuvant for in situ cancer vaccines with RT. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19994923
Volume :
13
Issue :
11
Database :
Complementary Index
Journal :
Pharmaceutics
Publication Type :
Academic Journal
Accession number :
153933193
Full Text :
https://doi.org/10.3390/pharmaceutics13111811