Back to Search
Start Over
Spatiotemporal responses in crop water footprint and benchmark under different irrigation techniques to climate change scenarios in China.
- Source :
- Hydrology & Earth System Sciences Discussions; 12/1/2021, p1-27, 27p
- Publication Year :
- 2021
-
Abstract
- Adaptation to future climate change with limited water resources is a major global challenge to sustainable and sufficient crop production. However, the large-scale responses of crop water footprint and its associated benchmarks under various irrigation techniques to future climate change scenarios remain unclear. The present study quantified the responses of maize and wheat water footprint per unit yield (WFP, m³ t<superscript>-1</superscript>) and corresponding WFP benchmarks under two representative concentration pathways (RCPs) in the 2030s, 2050s, and 2080s at a 5-arc minute grid level in the case for China. The differences among rain-fed and furrow-, micro-, and sprinkler-irrigated wheat and maize were identified. Compared with the baseline year (2013), maize WFP will increase under both RCP2.6 and RCP8.5, by 17 % and 13 %, respectively, until the 2080s. Wheat WFP will increase under RCP2.6 (by 12 % until the 2080s), while decrease by 12 % under RCP8.5 until the 2080s. WFP will increase the most for rain-fed crops. Relative to rain-fed crops, micro irrigation and sprinkler irrigation result in the smallest increases in WFP for maize and wheat, respectively. These water-saving managements will more effectively mitigate the negative impact of climate change. Furthermore, the spatial distributions of WFP benchmarks will not change as dramatically as those of WFP. The present study demonstrated that the visible different responses to climate change in terms of crop water consumption, water use efficiency, and WFP benchmarks under different irrigation techniques must be addressed and monitored. It also lays the foundation for future investigations into the influences of irrigation methods, RCPs, and crop types on WFP and its benchmarks in response to climate change in all agricultural regions worldwide. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 18122108
- Database :
- Complementary Index
- Journal :
- Hydrology & Earth System Sciences Discussions
- Publication Type :
- Academic Journal
- Accession number :
- 153920339
- Full Text :
- https://doi.org/10.5194/hess-2021-568