Back to Search Start Over

Imbibition of Newtonian Fluids in Paper-like Materials with the Infinitesimal Control Volume Method.

Authors :
Song, Kui
Huang, Ruijie
Hu, Xiaoling
Source :
Micromachines; Nov2021, Vol. 12 Issue 11, p1391-1391, 1p
Publication Year :
2021

Abstract

Paper-based microfluidic devices are widely used in point-of-care testing applications. Imbibition study of paper porous media is important for fluid controlling, and then significant to the applications of paper-based microfluidic devices. Here we propose an analytical approach based on the infinitesimal control volume method to study the imbibition of Newtonian fluids in commonly used paper-like materials. Three common paper shapes (rectangular paper strips, fan-shaped and circular paper sheets) are investigated with three modeling methods (corresponding to equivalent tiny pores with circle, square and regular triangle cross section respectively). A model is derived for liquid imbibition in rectangular paper strips, and the control equations for liquid imbibition in fan-shaped and circular paper sheets are also derived. The model is verified by imbibition experiments done using the mixed cellulose ester filter paper and pure water. The relation of imbibition distance and time is similar to that of the Lucas−Washburn (L−W) model. In addition, a new porosity measurement method based on the imbibition in circular paper sheets is proposed and verified. Finally, the flow rates are investigated. This study can provide guidance for the design of different shapes of paper, and for better applications of paper-based microfluidic devices. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2072666X
Volume :
12
Issue :
11
Database :
Complementary Index
Journal :
Micromachines
Publication Type :
Academic Journal
Accession number :
153896057
Full Text :
https://doi.org/10.3390/mi12111391