Back to Search
Start Over
On a general bilinear functional equation.
- Source :
- Aequationes Mathematicae; Dec2021, Vol. 95 Issue 6, p1257-1279, 23p
- Publication Year :
- 2021
-
Abstract
- Let X, Y be linear spaces over a field K . Assume that f : X 2 → Y satisfies the general linear equation with respect to the first and with respect to the second variables, that is, for all x , x i , y , y i ∈ X and with a i , b i ∈ K \ { 0 } , A i , B i ∈ K ( i ∈ { 1 , 2 } ). It is easy to see that such a function satisfies the functional equation for all x i , y i ∈ X ( i ∈ { 1 , 2 } ), where C 1 : = A 1 B 1 , C 2 : = A 1 B 2 , C 3 : = A 2 B 1 , C 4 : = A 2 B 2 . We describe the form of solutions and study relations between (∗) and (∗ ∗) . [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00019054
- Volume :
- 95
- Issue :
- 6
- Database :
- Complementary Index
- Journal :
- Aequationes Mathematicae
- Publication Type :
- Academic Journal
- Accession number :
- 153872075
- Full Text :
- https://doi.org/10.1007/s00010-021-00819-5