Back to Search Start Over

On a general bilinear functional equation.

Authors :
Bahyrycz, Anna
Sikorska, Justyna
Source :
Aequationes Mathematicae; Dec2021, Vol. 95 Issue 6, p1257-1279, 23p
Publication Year :
2021

Abstract

Let X, Y be linear spaces over a field K . Assume that f : X 2 → Y satisfies the general linear equation with respect to the first and with respect to the second variables, that is, for all x , x i , y , y i ∈ X and with a i , b i ∈ K \ { 0 } , A i , B i ∈ K ( i ∈ { 1 , 2 } ). It is easy to see that such a function satisfies the functional equation for all x i , y i ∈ X ( i ∈ { 1 , 2 } ), where C 1 : = A 1 B 1 , C 2 : = A 1 B 2 , C 3 : = A 2 B 1 , C 4 : = A 2 B 2 . We describe the form of solutions and study relations between (∗) and (∗ ∗) . [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00019054
Volume :
95
Issue :
6
Database :
Complementary Index
Journal :
Aequationes Mathematicae
Publication Type :
Academic Journal
Accession number :
153872075
Full Text :
https://doi.org/10.1007/s00010-021-00819-5