Back to Search
Start Over
Reprogramming microbial populations using a programmed lysis system to improve chemical production.
- Source :
- Nature Communications; 11/25/2021, Vol. 12 Issue 1, p1-14, 14p
- Publication Year :
- 2021
-
Abstract
- Microbial populations are a promising model for achieving microbial cooperation to produce valuable chemicals. However, regulating the phenotypic structure of microbial populations remains challenging. In this study, a programmed lysis system (PLS) is developed to reprogram microbial cooperation to enhance chemical production. First, a colicin M -based lysis unit is constructed to lyse Escherichia coli. Then, a programmed switch, based on proteases, is designed to regulate the effective lysis unit time. Next, a PLS is constructed for chemical production by combining the lysis unit with a programmed switch. As a result, poly (lactate-co-3-hydroxybutyrate) production is switched from PLH synthesis to PLH release, and the content of free PLH is increased by 283%. Furthermore, butyrate production with E. coli consortia is switched from E. coli BUT003 to E. coli BUT004, thereby increasing butyrate production to 41.61 g/L. These results indicate the applicability of engineered microbial populations for improving the metabolic division of labor to increase the efficiency of microbial cell factories. Microbial ecosystem-based bioproduction requires the regulation of phenotypic structure of microbial populations. Here, the authors report the construction of a programmed lysis system and its ability for reprograming microbial cooperation in poly(lactate-co-3-hydroxybutyrate) and butyrate production by E. coli strains. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 12
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- 153786542
- Full Text :
- https://doi.org/10.1038/s41467-021-27226-3