Back to Search Start Over

Application of the Modified Mohr–Coulomb Yield Criterion in Seismic Numerical Simulation of Tunnels.

Authors :
Sui, Chuan-Yi
Shen, Yu-Sheng
Wen, Yu-Min
Gao, Bo
Source :
Shock & Vibration; 11/25/2021, p1-20, 20p
Publication Year :
2021

Abstract

To solve the classical problem that the Mohr–Coulomb yield criterion overestimates the tensile properties of geotechnical materials, a modified Mohr–Coulomb yield criterion that includes both maximum tensile stress theory and smooth processing was established herein. The modified Mohr–Coulomb constitutive model is developed using the user-defined material subroutine (UMAT) available in finite element software ABAQUS, and the modified Mohr–Coulomb yield criterion is applied to construct a numerical simulation of a shaking table model test. Compared with the measured data from the shaking table test, the accuracies of the classical Mohr–Coulomb yield criterion and the modified Mohr–Coulomb yield criterion are assessed. Compared to the shaking table test, the classical Mohr–Coulomb model has a relatively large average error (−6.98% in peak acceleration values, −8.47% in displacement values, −23.93% in axial forces), while the modified Mohr–Coulomb model has a smaller average error (+2.71% in peak accelerations value, +3.19% in displacements value, +7.56% in axial forces). The results of numerical simulation using the modified Mohr–Coulomb yield criterion are closer to the measured data. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10709622
Database :
Complementary Index
Journal :
Shock & Vibration
Publication Type :
Academic Journal
Accession number :
153783308
Full Text :
https://doi.org/10.1155/2021/9968935