Back to Search Start Over

Optimal Beam Association for High Mobility mmWave Vehicular Networks: Lightweight Parallel Reinforcement Learning Approach.

Authors :
Van Huynh, Nguyen
Nguyen, Diep N.
Hoang, Dinh Thai
Dutkiewicz, Eryk
Source :
IEEE Transactions on Communications; Sep2021, Vol. 69 Issue 9, p5948-5961, 14p
Publication Year :
2021

Abstract

In intelligent transportation systems (ITS), vehicles are expected to feature with advanced applications and services which demand ultra-high data rates and low-latency communications. For that, the millimeter wave (mmWave) communication has been emerging as a very promising solution. However, incorporating the mmWave into ITS is particularly challenging due to the high mobility of vehicles and the inherent sensitivity of mmWave beams to dynamic blockages. This article addresses these problems by developing an optimal beam association framework for mmWave vehicular networks under high mobility. Specifically, we use the semi-Markov decision process to capture the dynamics and uncertainty of the environment. The Q-learning algorithm is then often used to find the optimal policy. However, Q-learning is notorious for its slow-convergence. Instead of adopting deep reinforcement learning structures (like most works in the literature), we leverage the fact that there are usually multiple vehicles on the road to speed up the learning process. To that end, we develop a lightweight yet very effective parallel Q-learning algorithm to quickly obtain the optimal policy by simultaneously learning from various vehicles. Extensive simulations demonstrate that our proposed solution can increase the data rate by 47% and reduce the disconnection probability by 29% compared to other solutions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00906778
Volume :
69
Issue :
9
Database :
Complementary Index
Journal :
IEEE Transactions on Communications
Publication Type :
Academic Journal
Accession number :
153710929
Full Text :
https://doi.org/10.1109/TCOMM.2021.3088305