Back to Search
Start Over
On the complex structure of symplectic quotients.
- Source :
- SCIENCE CHINA Mathematics; Dec2021, Vol. 64 Issue 12, p2719-2742, 24p
- Publication Year :
- 2021
-
Abstract
- Let K be a compact group. For a symplectic quotient M<subscript>λ</subscript> of a compact Hamiltonian Kähler K-manifold, we show that the induced complex structure on M<subscript>λ</subscript> is locally invariant when the parameter λ varies in Lie(K)*. To prove such a result, we take two different approaches: (i) use the complex geometry properties of the symplectic implosion construction; (ii) investigate the variation of geometric invariant theory (GIT) quotients. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 16747283
- Volume :
- 64
- Issue :
- 12
- Database :
- Complementary Index
- Journal :
- SCIENCE CHINA Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- 153703146
- Full Text :
- https://doi.org/10.1007/s11425-019-1783-6