Back to Search Start Over

On the complex structure of symplectic quotients.

Authors :
Wang, Xiangsheng
Source :
SCIENCE CHINA Mathematics; Dec2021, Vol. 64 Issue 12, p2719-2742, 24p
Publication Year :
2021

Abstract

Let K be a compact group. For a symplectic quotient M<subscript>λ</subscript> of a compact Hamiltonian Kähler K-manifold, we show that the induced complex structure on M<subscript>λ</subscript> is locally invariant when the parameter λ varies in Lie(K)*. To prove such a result, we take two different approaches: (i) use the complex geometry properties of the symplectic implosion construction; (ii) investigate the variation of geometric invariant theory (GIT) quotients. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16747283
Volume :
64
Issue :
12
Database :
Complementary Index
Journal :
SCIENCE CHINA Mathematics
Publication Type :
Academic Journal
Accession number :
153703146
Full Text :
https://doi.org/10.1007/s11425-019-1783-6