Back to Search Start Over

Flexible ceramic nanofibrous sponges with hierarchically entangled graphene networks enable noise absorption.

Authors :
Zong, Dingding
Cao, Leitao
Yin, Xia
Si, Yang
Zhang, Shichao
Yu, Jianyong
Ding, Bin
Source :
Nature Communications; 11/15/2021, Vol. 12 Issue 1, p1-11, 11p
Publication Year :
2021

Abstract

Traffic noise pollution has posed a huge burden to the global economy, ecological environment and human health. However, most present traffic noise reduction materials suffer from a narrow absorbing band, large weight and poor temperature resistance. Here, we demonstrate a facile strategy to create flexible ceramic nanofibrous sponges (FCNSs) with hierarchically entangled graphene networks, which integrate unique hierarchical structures of opened cells, closed-cell walls and entangled networks. Under the precondition of independent of chemical crosslinking, high enhancement in buckling and compression performances of FCNSs is achieved by forming hierarchically entangled structures in all three-dimensional space. Moreover, the FCNSs show enhanced broadband noise absorption performance (noise reduction coefficient of 0.56 in 63–6300 Hz) and lightweight feature (9.3 mg cm<superscript>–3</superscript>), together with robust temperature-invariant stability from –100 to 500 °C. This strategy paves the way for the design of advanced fibrous materials for highly efficient noise absorption. Noise pollution has been a burden to the global economy, environment, and human health. Here the authors demonstrate a facile route to produce flexible ceramic nanofibrous sponges with hierarchically entangled graphene networks and its excellent noise absorption properties at elevated temperatures. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
12
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
153584986
Full Text :
https://doi.org/10.1038/s41467-021-26890-9