Back to Search Start Over

Utilisation of probabilistic MT inversions to constrain magnetic data inversion: proof-of-concept and field application.

Authors :
Giraud, Jeremie
Seillé, Hoël
Lindsay, Mark D.
Visser, Gerhard
Ogarko, Vitaliy
Jessell, Mark W.
Source :
Solid Earth Discussions; 11/3/2021, p1-33, 33p
Publication Year :
2021

Abstract

We propose, test and apply a methodology integrating 1D magnetotelluric (MT) and magnetic data inversion, with a focus on the characterization of the cover-basement interface. It consists of a cooperative inversion workflow relying on standalone inversion codes. Probabilistic information about the presence of rock units is derived from MT and passed on to magnetic inversion through constraints combining such structural constraints with petrophysical prior information. First, we perform the 1D probabilistic inversion of MT data for all sites and recover the respective probabilities of observing the cover-basement interface, which we interpolate to the rest of the study area. We then calculate the probabilities of observing the different rock units and partition the model into domains defined by combinations of rock units with non-zero probabilities. Third, we combine such domains with petrophysical information to apply spatially-varying, disjoint interval bound constraints to least-squares magnetic data inversion. We demonstrate the proof-of-concept using a realistic synthetic model reproducing features from the Mansfield area (Victoria, Australia) using a series of uncertainty indicators. We then apply the workflow to field data from the prospective mining region of Cloncurry (Queensland, Australia). Results indicate that our integration methodology efficiently leverages the complementarity between separate MT and magnetic data modelling approaches and can improve our capability to image the cover-basement interface. In the field application case, our findings also suggest that the proposed workflow may be useful to refine existing geological interpretations and to infer lateral variations within the basement. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18699537
Database :
Complementary Index
Journal :
Solid Earth Discussions
Publication Type :
Academic Journal
Accession number :
153571783
Full Text :
https://doi.org/10.5194/se-2021-124