Back to Search
Start Over
A Chebyshev polynomial-based conditional privacy-preserving authentication and group-key agreement scheme for VANET.
- Source :
- Nonlinear Dynamics; Nov2021, Vol. 106 Issue 3, p2655-2666, 12p
- Publication Year :
- 2021
-
Abstract
- Vehicle ad hoc network (VANET) is an open communication environment. Any user can broadcast messages, which means that it can be easily attacked by malicious users. Therefore, the authentication of vehicles is needed. In this paper, we propose a Chebyshev polynomial-based conditional privacy-preserving authentication and group-key agreement scheme for VANET. Specifically, we solve three problems in VANET: (1) we improve the effectiveness of TA by using Chebyshev polynomial to authenticate vehicles; (2) we reduce the computational burden of TA by using Chinese remainder theorem to manage group members; (3) we provide conditional privacy for users by using traceable pseudonym scheme. Theoretical and experimental results show that the proposed scheme is more efficient than most existing schemes. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 0924090X
- Volume :
- 106
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- Nonlinear Dynamics
- Publication Type :
- Academic Journal
- Accession number :
- 153557376
- Full Text :
- https://doi.org/10.1007/s11071-021-06898-y