Back to Search Start Over

Metal Effect Meets Volcano Plots: A DFT Study on Tris(phosphino)borane‐Transition Metal Complexes Catalyzed H2 Activation.

Authors :
Su, Peifeng
Li, Yinwu
Ke, Zhuofeng
Source :
Chemistry - An Asian Journal; 11/2/2021, Vol. 16 Issue 21, p3427-3436, 10p
Publication Year :
2021

Abstract

Bifunctional transition metal complexes are of particular interest in metal‐ligand cooperative activation of small molecules. As a novel type of bifunctional catalyst, Lewis acid transition metal (LA‐TM) complexes have attracted increasing interest in hydrogen activation and storage. To advance the catalyst design, herein the metal effect of LA‐TM complexes on the hydrogen activation has been systematically studied with a series of tris(phosphino)borane (TPB) complexes with V, Cr, Mn, Fe, Co, and Ni as metal centers. The metal effect not only influences the mechanism of hydrogen activation, but also notably casts a volcano plot for the activity. TPB complexes of V, Cr, Mn, Fe, and Co tend to activate H2 through a stepwise mechanism, while TPB‐Ni prefers a synergetic mechanism for H2 activation. More importantly, the metal effect significantly influences the activity of H2 activation and the formation of the LA‐H‐TM bridging hydride. The trend of changes in the LA‐H‐TM structures, the second‐order perturbation stabilization energies, and the Laplacian bond orders, along with different metals (from V to Ni), are all interestingly constitute volcano plots for the performance of TPB‐TM complexes catalyzed H2 activation. TPB‐Mn and TPB‐Fe are found to be the optimal catalysts among the discussed TPB‐TM complexes. The volcano plots disclosed for the metal effects should be informative and instructive for homogeneous and heterogeneous LA‐TM catalysts development. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18614728
Volume :
16
Issue :
21
Database :
Complementary Index
Journal :
Chemistry - An Asian Journal
Publication Type :
Academic Journal
Accession number :
153383619
Full Text :
https://doi.org/10.1002/asia.202100772