Back to Search Start Over

Petrogenesis of the Early Cretaceous Hongshan Complex in the Southern Taihang Mountains: Constraints from Element Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes.

Authors :
Chu, Xiaolei
Sun, Jinggui
Sun, Fanting
Mei, Yanxiong
Liu, Yang
Men, Lanjing
Zhao, Keqiang
Zhang, Xiaotian
Source :
Minerals (2075-163X); Oct2021, Vol. 11 Issue 10, p1111-1111, 1p
Publication Year :
2021

Abstract

The Hongshan complex, located in the southern part of the Taihang Mountains in the central part of the North China Craton, consists of syenite stocks (including fine-grained biotite aegirine syenite, medium-grained aegirine gabbro syenite, coarse-grained aegirine gabbro syenite, syenite pegmatite, and biotite syenite porphyry), with monzo-diorite and monzo-gabbro dikes. This paper presents zircon U-Pb ages and Hf isotope data and whole-rock geochemical data from the Hongshan complex. LA–ICP-MS zircon U–Pb age from the fine-grained biotite aegirine syenite, monzo-diorite, and monzo-gabbro are 129.3 ± 2.0 Ma, 124.8 ± 1.3 Ma, and 124.1 ± 0.9 Ma, respectively, indicating their emplacement in the Early Cretaceous when the North China Craton was extensively reactivated. The monzo-diorite and monzo-gabbro have low SiO<subscript>2</subscript> contents (48.94–57.75 wt%), total alkali contents (5.2–9.4 wt%), and εHf (t) values of −22.3 to −18.4 and are enriched in MgO (4.0–8.2 wt%), Al2O3 (14.3–15.8 wt%), light rare earth elements (LREEs) and large ion lithophile elements (LILEs). Interpretation of elemental and isotopic data suggests that the magma of monzo-diorite and monzo-gabbro were derived from partial melting of the enriched lithospheric mantle metasomatized by slab-derived hydrous fluids. Syenites with high alkali (K<subscript>2</subscript>O + Na<subscript>2</subscript>O = 9.4–13.0 wt%) and Sr contents (356–1737 ppm) and low Yb contents (0.94–2.65 ppm) are enriched in Al (Al<subscript>2</subscript>O<subscript>3</subscript> = 16.4–19.1 wt%), but depleted in MgO (0.09–2.56 w%), Cr (Avg = 7.16 ppm), Co (Avg = 6.85 ppm) and Ni (Avg = 9.79 ppm), showing the geochemical features of adakitic rocks associated with thickened lower crust. Combining zircon <superscript>176</superscript>Hf/<superscript>177</superscript>Hf ratios of 0.282176 to 0.282359, εHf(t) values of −18.3 to −11.8 and εNd (t) values of −11.1 to −8.2, we conclude that the syenite magma was derived from the mixing of the thickened lower crust and the enriched lithospheric mantle magma. These magma processes were controlled by Paleo-Pacific plate subduction and resulted in the destruction and thinning of the central North China Craton. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2075163X
Volume :
11
Issue :
10
Database :
Complementary Index
Journal :
Minerals (2075-163X)
Publication Type :
Academic Journal
Accession number :
153341014
Full Text :
https://doi.org/10.3390/min11101111