Back to Search Start Over

Enhanced hyperspectral tomography for bioimaging by spatiospectral reconstruction.

Authors :
Warr, Ryan
Ametova, Evelina
Cernik, Robert J.
Fardell, Gemma
Handschuh, Stephan
Jørgensen, Jakob S.
Papoutsellis, Evangelos
Pasca, Edoardo
Withers, Philip J.
Source :
Scientific Reports; 10/21/2021, Vol. 11 Issue 1, p1-13, 13p
Publication Year :
2021

Abstract

Here we apply hyperspectral bright field imaging to collect computed tomographic images with excellent energy resolution (~ 1 keV), applying it for the first time to map the distribution of stain in a fixed biological sample through its characteristic K-edge. Conventionally, because the photons detected at each pixel are distributed across as many as 200 energy channels, energy-selective images are characterised by low count-rates and poor signal-to-noise ratio. This means high X-ray exposures, long scan times and high doses are required to image unique spectral markers. Here, we achieve high quality energy-dispersive tomograms from low dose, noisy datasets using a dedicated iterative reconstruction algorithm. This exploits the spatial smoothness and inter-channel structural correlation in the spectral domain using two carefully chosen regularisation terms. For a multi-phase phantom, a reduction in scan time of 36 times is demonstrated. Spectral analysis methods including K-edge subtraction and absorption step-size fitting are evaluated for an ex vivo, single (iodine)-stained biological sample, where low chemical concentration and inhomogeneous distribution can affect soft tissue segmentation and visualisation. The reconstruction algorithms are available through the open-source Core Imaging Library. Taken together, these tools offer new capabilities for visualisation and elemental mapping, with promising applications for multiply-stained biological specimens. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
11
Issue :
1
Database :
Complementary Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
153159459
Full Text :
https://doi.org/10.1038/s41598-021-00146-4