Back to Search Start Over

Soil urease inhibition by various plant extracts.

Authors :
Rana, Muhammad Ajmal
Mahmood, Rashid
Ali, Sajid
Source :
PLoS ONE; 10/14/2021, Vol. 16 Issue 10, p1-11, 11p
Publication Year :
2021

Abstract

Urea is the most popular and widely used nitrogenous fertilizer. High soil urease activity rapidly hydrolyses applied urea to ammonia which contributes to soil nitrogen (N) losses and reduces N use efficiency of crop plants. The ammonia losses can be minimized by the inhibition of soil urease activity which has been explored using various potential chemical inhibitors. However, the soil urease activity inhibition potential of plant extracts is rarely explored to date. In the present study, extracts of 35 plant materials were taken and evaluated against jack bean urease. Eleven extracts, showing >50% jack bean urease inhibition, were selected and further investigated in 13 soils collected from various districts of Punjab, Pakistan. Interestingly, except Capsicum annum, Melia azedarach, Citrus reticulata and Quercus infectoria, the plant extracts showed urease inhibition activities in soils, the extent of which was lower as compared to that observed in jack bean urease though. Maximum urea hydrolysis inhibition (70%) was noted with Vachellia nilotica which was 40% more than that of hydroquinone (50%) followed by that of Eucalyptus camaldulensis (24%). The extracts of V. nilotica and E. camaldulensis were coated on urea and applied to soil in the next step. At 21<superscript>st</superscript> day, 239% and 116% more urea-N was recovered from soil treated with V. nilotica and E. camaldulensis extracts coated urea, respectively, as compared to uncoated urea. Conclusively, these results indicated that the coating of V. nilotica and E. camaldulensis extracts on urea prills prolonged urea persistence in soil owing to minimum urea hydrolysis, probably, the extracts of V. nilotica and E. camaldulensis showed their urease inhibition potential. The results of this study provide a base line for the identification of new soil urease inhibitor compounds from plant materials in future. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
16
Issue :
10
Database :
Complementary Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
153037799
Full Text :
https://doi.org/10.1371/journal.pone.0258568