Back to Search
Start Over
From calibration to parameter learning: Harnessing the scaling effects of big data in geoscientific modeling.
- Source :
- Nature Communications; 10/13/2021, Vol. 12 Issue 1, p1-13, 13p
- Publication Year :
- 2021
-
Abstract
- The behaviors and skills of models in many geosciences (e.g., hydrology and ecosystem sciences) strongly depend on spatially-varying parameters that need calibration. A well-calibrated model can reasonably propagate information from observations to unobserved variables via model physics, but traditional calibration is highly inefficient and results in non-unique solutions. Here we propose a novel differentiable parameter learning (dPL) framework that efficiently learns a global mapping between inputs (and optionally responses) and parameters. Crucially, dPL exhibits beneficial scaling curves not previously demonstrated to geoscientists: as training data increases, dPL achieves better performance, more physical coherence, and better generalizability (across space and uncalibrated variables), all with orders-of-magnitude lower computational cost. We demonstrate examples that learned from soil moisture and streamflow, where dPL drastically outperformed existing evolutionary and regionalization methods, or required only ~12.5% of the training data to achieve similar performance. The generic scheme promotes the integration of deep learning and process-based models, without mandating reimplementation. Much effort is invested in calibrating model parameters for accurate outputs, but established methods can be inefficient and generic. By learning from big dataset, a new differentiable framework for model parameterization outperforms state-of-the-art methods, produce more physically-coherent results, using a fraction of the training data, computational power, and time. The method promotes a deep integration of machine learning with process-based geoscientific models. [ABSTRACT FROM AUTHOR]
- Subjects :
- DEEP learning
BIG data
DATA modeling
CALIBRATION
MACHINE learning
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 12
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- 153011188
- Full Text :
- https://doi.org/10.1038/s41467-021-26107-z