Back to Search Start Over

An unsupervised machine-learning-based classification of aerosol microphysical properties over 10 years at Cabo Verde.

Authors :
Gong, Xianda
Wex, Heike
Müller, Thomas
Henning, Silvia
Voigtländer, Jens
Wiedensohler, Alfred
Stratmann, Frank
Source :
Atmospheric Chemistry & Physics Discussions; 10/4/2021, p1-27, 27p
Publication Year :
2021

Abstract

The Cape Verde Atmospheric Observatory (CVAO), which is influenced by both, marine and desert dust air masses, has been used for long-term measurements of different properties of the atmospheric aerosol from 2008 to 2017. These properties include particle number size distributions (PNSD), light absorbing carbon (LAC) and concentrations of cloud condensation nuclei (CCN) together with their hygroscopicity. Here we summarize the results obtained for these properties and use an unsupervised machine learning algorithm for the classification of aerosol types. Five types of aerosols, i.e., marine, freshly-formed, mixture, moderate dust and heavy dust, were classified. Air masses during marine periods are from the Atlantic Ocean and during dust periods are from the Sahara. Heavy dust was more frequently present during wintertime, whereas the clean marine periods were more frequently present during springtime. It was observed that during the dust periods CCN number concentrations at a supersaturation of 0.30 % are roughly 2.5 times higher than during marine periods, but the hygroscopicity (κ) of particles in the size range from ~30 to ~175 nm during marine and dust periods are comparable. The long-term data presented here, together with the aerosol classification, can be used as a base to improve our understanding of annual cycles of the atmospheric aerosol in the eastern tropical Atlantic and on aerosol-cloud interactions and it can be used as a base for driving, evaluating and constraining atmospheric model simulations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16807367
Database :
Complementary Index
Journal :
Atmospheric Chemistry & Physics Discussions
Publication Type :
Academic Journal
Accession number :
152790255
Full Text :
https://doi.org/10.5194/acp-2021-743