Back to Search Start Over

Transdermal vaccination via 3D-printed microneedles induces potent humoral and cellular immunity.

Authors :
Caudill, Cassie
Perry, Jillian L.
Iliadis, Kimon
Tessema, Addis T.
Lee, Brian J.
Mecham, Beverly S.
Shaomin Tian
DeSimone, Joseph M.
Source :
Proceedings of the National Academy of Sciences of the United States of America; 9/28/2021, Vol. 118 Issue 39, p1-8, 8p
Publication Year :
2021

Abstract

Vaccination is an essential public health measure for infectious disease prevention. The exposure of the immune system to vaccine formulations with the appropriate kinetics is critical for inducing protective immunity. In this work, faceted microneedle arrays were designed and fabricated utilizing a three-dimensional (3D)-printing technique called continuous liquid interface production (CLIP). The faceted microneedle design resulted in increased surface area as compared with the smooth square pyramidal design, ultimately leading to enhanced surface coating of model vaccine components (ovalbumin and CpG). Utilizing fluorescent tags and live-animal imaging, we evaluated in vivo cargo retention and bioavailability in mice as a function of route of delivery. Compared with subcutaneous bolus injection of the soluble components, microneedle transdermal delivery not only resulted in enhanced cargo retention in the skin but also improved immune cell activation in the draining lymph nodes. Furthermore, the microneedle vaccine induced a potent humoral immune response, with higher total IgG (Immunoglobulin G) and a more balanced IgG1/IgG2a repertoire and achieved dose sparing. Furthermore, it elicited T cell responses as characterized by functional cytotoxic CD8<superscript>+</superscript> T cells and CD4<superscript>+</superscript> T cells secreting Th1 (T helper type 1)-cytokines. Taken together, CLIP 3D-printedmicroneedles coated with vaccine components provide a useful platform for a noninvasive, self-applicable vaccination. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00278424
Volume :
118
Issue :
39
Database :
Complementary Index
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
152787121
Full Text :
https://doi.org/10.1073/pnas.2102595118