Back to Search Start Over

Nanomechanical Concepts in Magnetically Guided Systems to Investigate the Magnetic Dipole Effect on Ferromagnetic Flow Past a Vertical Cone Surface.

Authors :
Usman, Auwalu Hamisu
Shah, Zahir
Kumam, Poom
Khan, Waris
Humphries, Usa Wannasingha
Source :
Coatings (2079-6412); Sep2021, Vol. 11 Issue 9, p1129-1129, 1p
Publication Year :
2021

Abstract

Because of the floating magnetic nanomaterial, ferrofluids have magneto-viscous properties, enabling controllable temperature changes as well as nano-structured fluid characteristics. The study's purpose is to evolve and solve a theoretical model of bioconvection nanofluid flow with a magnetic dipole effect in the presence of Curie temperature and using the Forchheimer-extended Darcy law subjected to a vertical cone surface. The model also includes the nonlinear thermal radiation, heat suction/injection, viscous dissipation, and chemical reaction effects. The developed model problem is transformed into nonlinear ordinary differentials, which have been solved using the homotopy analysis technique. In this problem, the behavior of function profiles are graphically depicted and explained for a variety of key parameters. For a given set of parameters, tables representthe expected numerical values and behaviors of physical quantities. The nanofluid velocity decreases as the ferrohydrodynamic, local inertia, and porosity parameters increase and decrease when the bioconvection Rayleigh number increases. Many key parameters improved the thermal boundary layer and temperature. The concentration is low when the chemical reaction parameter and Schmidt number rises. Furthermore, as the bioconvection constant, Peclet and Lewis numbers rise, so does the density of motile microorganisms. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20796412
Volume :
11
Issue :
9
Database :
Complementary Index
Journal :
Coatings (2079-6412)
Publication Type :
Academic Journal
Accession number :
152715638
Full Text :
https://doi.org/10.3390/coatings11091129