Back to Search Start Over

Post‐Seismic Deformation Related to the 2016 Central Italy Seismic Sequence From GPS Displacement Time‐Series.

Authors :
Mandler, E.
Pintori, F.
Gualandi, A.
Anderlini, L.
Serpelloni, E.
Belardinelli, M. E.
Source :
Journal of Geophysical Research. Solid Earth; Sep2021, Vol. 126 Issue 9, p1-27, 27p
Publication Year :
2021

Abstract

The 2016–2017 Central Italy earthquake sequence struck the central Apennines between August 2016 and October 2016 with Mw ∈ [5.9; 6.5], plus four earthquakes occurring in January 2017 with Mw ∈ [5.0; 5.5]. We study Global Positioning System time series including near‐ and far‐field domains. We use a variational Bayesian independent component analysis technique to separate the post‐seismic deformation from signals caused by variation of the water content in aquifers at hundreds of meters of depth and of the soil moisture. For each independent component, realistic uncertainties and a plausible physical explanation are provided. We focus on the study of afterslip on the main structures surrounding the mainshock, highlighting the role played by faults that were not activated during the co‐seismic phase in accommodating the post‐seismic deformation. We report aseismic deformation occurring on the Paganica fault, which hosted the Mw 6.1 2009 L'Aquila earthquake, suggesting that static stress transfer and aseismic slip influence the recurrence time of nearby (∼50 km further south of the mainshocks) segments. A ∼2–3 km thick subhorizontal shear‐zone, clearly illuminated by seismicity, which bounds at depth the west‐dipping normal faults where the mainshocks nucleated, also shows aseismic slip. Since afterslip alone underestimates the displacement in the far‐field domain, we consider the possibility that the shear zone marks the brittle‐ductile transition, assuming the viscoelastic relaxation of the lower crust as a mechanism contributing to the post‐seismic displacement. Our results suggest that multiple deformation processes are active in the first 2 years after the mainshocks. Key Points: We study the post‐seismic deformation following the 2016–2017 Central Italy seismic sequence through Global Positioning System displacement time seriesWe map the afterslip distribution on faults co‐seismically activated and we investigate interaction among faultsWe infer the occurrence of multiple post‐seismic deformation mechanisms including afterslip and viscoelastic relaxation [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21699313
Volume :
126
Issue :
9
Database :
Complementary Index
Journal :
Journal of Geophysical Research. Solid Earth
Publication Type :
Academic Journal
Accession number :
152653160
Full Text :
https://doi.org/10.1029/2021JB022200