Back to Search Start Over

META3.1exp: A new Global Mesoscale Eddy Trajectories Atlas derived from altimetry.

Authors :
Pegliasco, Cori
Delepoulle, Antoine
Morrow, Rosemary
Faugère, Yannice
Dibarboure, Gérald
Source :
Earth System Science Data Discussions; 9/17/2021, p1-31, 31p
Publication Year :
2021

Abstract

This paper presents the new global Mesoscale Eddy Trajectories Atlases (META3.1exp DT all-satellites, https://doi.org/10.24400/527896/a01-2021.001, Pegliasco et al., 2021a and META3.1exp DT two-satellites, https://doi.org/10.24400/527896/a01-2021.002, Pegliasco et al., 2021b), composed of the eddies' identifications and trajectories produced with altimetric maps. The detection method used is a heritage of the py-eddy-tracker algorithm developed by Mason et al. (2014), optimized to manage with efficiency large datasets, and thus long time series. These products are an improvement of the META2.0 product, produced by SSALTO/DUACS and distributed by AVISO+ (https://aviso.altimetry.fr) with support from CNES, in collaboration with Oregon State University with support from NASA and based on Chelton et al. (2011). META3.1exp provides supplementary information such as the mesoscale eddy shapes with the eddy edges and their maximum speed contour, and the eddy speed profiles from the center to the edge. The tracking algorithm used is based on overlapping contours, includes virtual observations and acts as a filter with respect to the shortest trajectories. The absolute dynamic topography field is now used for eddy detection, instead of the sea level anomaly maps, to better represent the ocean dynamics in the more energetic areas and close to coasts and islands. To evaluate the impact of the changes from META2.0 to META3.1exp, a comparison methodology has been applied. The similarity coefficient is based on the ratio between the eddies' overlap and their cumulative area, and allows an extensive comparison of the different datasets in terms of geographic distribution, statistics over the main physical characteristics, changes in the lifetime of the trajectories, etc. After evaluating the impact of each change separately, we conclude that the major differences between META3.1exp and META2.0 are due to the change in the detection algorithm. META3.1exp contains smaller eddies and trajectories lasting at least 10 days that were not available in the distributed META2.0 product. Nevertheless, 55 % of the structures in META2.0 are similar in META3.1exp, ensuring the continuity between the two products, and the physical characteristics of the common eddies are close. Geographically, the eddy distribution mainly differs in the strong current regions, where the mean dynamic topography gradients are sharp. The additional information on the eddy contours allows more accurate collocation of mesoscale structures with data from other sources, so META3.1exp is recommended for multi-disciplinary applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18663591
Database :
Complementary Index
Journal :
Earth System Science Data Discussions
Publication Type :
Academic Journal
Accession number :
152548366
Full Text :
https://doi.org/10.5194/essd-2021-300