Back to Search Start Over

Conserved and non‐conserved triggers of 24‐nucleotide reproductive phasiRNAs in eudicots.

Authors :
Pokhrel, Suresh
Huang, Kun
Meyers, Blake C.
Source :
Plant Journal; Sep2021, Vol. 107 Issue 5, p1332-1345, 14p
Publication Year :
2021

Abstract

SUMMARY: Small RNAs play important roles in plant growth and development by modulating expression of genes and transposons. In many flowering plant species, male reproductive organs, the anthers, produce abundant phased small interfering RNAs (phasiRNAs). Two classes of reproductive phasiRNAs are generally known, mostly from monocots: (i) pre‐meiotic 21‐nucleotide (nt) phasiRNAs triggered by miR2118 and (ii) meiotic 24‐nt phasiRNAs triggered by miR2275. Here, we describe conserved and non‐conserved triggers of 24‐nt phasiRNAs in several eudicots. We found that the abundant 24‐nt phasiRNAs in the basal eudicot columbine (Aquilegia coerulea) are produced by the canonical trigger miR2275, as well as by other non‐canonical triggers, miR482/2118 and miR14051. These triggering microRNAs (miRNAs) are localized in microspore mother cells and tapetal cells of meiotic and post‐meiotic stage anthers. Furthermore, we identified a lineage‐specific trigger (miR11308) of 24‐nt phasiRNAs and an expanded number of 24‐PHAS loci in wild strawberry (Fragaria vesca). We validated the presence of the miR2275‐derived 24‐nt phasiRNA pathway in rose (Rosa chinensis). Finally, we evaluated all eudicots that have been validated for the presence of 24‐nt phasiRNAs as possible model systems in which to study the biogenesis and function of 24‐nt phasiRNAs. We conclude that columbine (Aquilegia coerulea) would be a strong model because of its extensive number of 24‐PHAS loci and its diversity of trigger miRNAs. Significance Statement: We show that the 24‐nucleotide (nt) reproductive phased small interfering RNA (phasiRNA) pathway is conserved in a diverse eudicot, Aquilegia. We validated this pathway in rose. We also identified novel conserved (e.g., miR2118) and lineage‐specific triggers involved in initiating expression of 24‐nt phasiRNAs in eudicots. Our results detail the diversification of this pathway in several eudicots and the cellular localization of conserved and non‐conserved triggers. We combine these data to propose Aquilegia as a model eudicot in which to study reproductive phasiRNAs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09607412
Volume :
107
Issue :
5
Database :
Complementary Index
Journal :
Plant Journal
Publication Type :
Academic Journal
Accession number :
152513885
Full Text :
https://doi.org/10.1111/tpj.15382