Back to Search
Start Over
Cognitive control affects motor learning through local variations in GABA within the primary motor cortex.
- Source :
- Scientific Reports; 9/17/2021, Vol. 11 Issue 1, p1-14, 14p
- Publication Year :
- 2021
-
Abstract
- The primary motor cortex (M1) is crucial for motor learning; however, its interaction with other brain areas during motor learning remains unclear. We hypothesized that the fronto-parietal execution network (FPN) provides learning-related information critical for the flexible cognitive control that is required for practice. We assessed network-level changes during sequential finger tapping learning under speed pressure by combining magnetic resonance spectroscopy and task and resting-state functional magnetic resonance imaging. There was a motor learning-related increase in preparatory activity in the fronto-parietal regions, including the right M1, overlapping the FPN and sensorimotor network (SMN). Learning-related increases in M1-seeded functional connectivity with the FPN, but not the SMN, were associated with decreased GABA/glutamate ratio in the M1, which were more prominent in the parietal than the frontal region. A decrease in the GABA/glutamate ratio in the right M1 was positively correlated with improvements in task performance (p = 0.042). Our findings indicate that motor learning driven by cognitive control is associated with local variations in the GABA/glutamate ratio in the M1 that reflects remote connectivity with the FPN, representing network-level motor sequence learning formations. [ABSTRACT FROM AUTHOR]
- Subjects :
- MOTOR learning
GABA
MOTOR cortex
FUNCTIONAL connectivity
LARGE-scale brain networks
Subjects
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 11
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- 152503436
- Full Text :
- https://doi.org/10.1038/s41598-021-97974-1