Back to Search
Start Over
Comparative implementation between neuro-emotional genetic algorithm and novel ensemble computing techniques for modelling dissolved oxygen concentration.
- Source :
- Hydrological Sciences Journal/Journal des Sciences Hydrologiques; Aug2021, Vol. 66 Issue 10, p1584-1596, 13p
- Publication Year :
- 2021
-
Abstract
- Accurate prediction of dissolved oxygen (DO) concentration is important for managing healthy aquatic ecosystems. This study investigates the comparative potential of the emotional artificial neural network-genetic algorithm (EANN-GA), and three ensemble techniques, i.e. emotional artificial neural network (EANN), feedforward neural network (FFNN), and neural network ensemble (NNE), to predict DO concentration in the Kinta River basin of Malaysia. The performance of EANN-GA, EANN, FFNN, and NNE models in predicting DO was evaluated using statistical metrics and visual interpretation. Appraisal of the results revealed a promising performance of the NNE-M3 model (Nash-Sutcliffe efficiency (NSE) = 0.8743/0.8630, correlation coefficient (CC) = 0.9351/0.9113, mean square error (MSE) = 0.5757/0.6833 mg/L, root mean square error (RMSE) = 0.7588/0.8266 mg/L, and mean absolute percentage error (MAPE) = 20.6581/14.1675) during the calibration/validation period compared to EANN-GA, EANN, and FFNN models in DO prediction in the study basin. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 02626667
- Volume :
- 66
- Issue :
- 10
- Database :
- Complementary Index
- Journal :
- Hydrological Sciences Journal/Journal des Sciences Hydrologiques
- Publication Type :
- Academic Journal
- Accession number :
- 152309618
- Full Text :
- https://doi.org/10.1080/02626667.2021.1937179