Back to Search Start Over

Comparative implementation between neuro-emotional genetic algorithm and novel ensemble computing techniques for modelling dissolved oxygen concentration.

Authors :
Abba, S. I.
Abdulkadir, R. A.
Sammen, Saad Sh.
Usman, A. G.
Meshram, Sarita Gajbhiye
Malik, Anurag
Shahid, Shamsuddin
Source :
Hydrological Sciences Journal/Journal des Sciences Hydrologiques; Aug2021, Vol. 66 Issue 10, p1584-1596, 13p
Publication Year :
2021

Abstract

Accurate prediction of dissolved oxygen (DO) concentration is important for managing healthy aquatic ecosystems. This study investigates the comparative potential of the emotional artificial neural network-genetic algorithm (EANN-GA), and three ensemble techniques, i.e. emotional artificial neural network (EANN), feedforward neural network (FFNN), and neural network ensemble (NNE), to predict DO concentration in the Kinta River basin of Malaysia. The performance of EANN-GA, EANN, FFNN, and NNE models in predicting DO was evaluated using statistical metrics and visual interpretation. Appraisal of the results revealed a promising performance of the NNE-M3 model (Nash-Sutcliffe efficiency (NSE) = 0.8743/0.8630, correlation coefficient (CC) = 0.9351/0.9113, mean square error (MSE) = 0.5757/0.6833 mg/L, root mean square error (RMSE) = 0.7588/0.8266 mg/L, and mean absolute percentage error (MAPE) = 20.6581/14.1675) during the calibration/validation period compared to EANN-GA, EANN, and FFNN models in DO prediction in the study basin. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02626667
Volume :
66
Issue :
10
Database :
Complementary Index
Journal :
Hydrological Sciences Journal/Journal des Sciences Hydrologiques
Publication Type :
Academic Journal
Accession number :
152309618
Full Text :
https://doi.org/10.1080/02626667.2021.1937179