Back to Search Start Over

Small-molecule suppression of calpastatin degradation reduces neuropathology in models of Huntington's disease.

Authors :
Hu, Di
Sun, Xiaoyan
Magpusao, Anniefer
Fedorov, Yuriy
Thompson, Matthew
Wang, Benlian
Lundberg, Kathleen
Adams, Drew J.
Qi, Xin
Source :
Nature Communications; 9/6/2021, Vol. 12 Issue 1, p1-19, 19p
Publication Year :
2021

Abstract

Mitochondrial dysfunction is a common hallmark of neurological disorders, and reducing mitochondrial damage is considered a promising neuroprotective therapeutic strategy. Here, we used high-throughput small molecule screening to identify CHIR99021 as a potent enhancer of mitochondrial function. CHIR99021 improved mitochondrial phenotypes and enhanced cell viability in several models of Huntington's disease (HD), a fatal inherited neurodegenerative disorder. Notably, CHIR99201 treatment reduced HD-associated neuropathology and behavioral defects in HD mice and improved mitochondrial function and cell survival in HD patient-derived neurons. Independent of its known inhibitory activity against glycogen synthase kinase 3 (GSK3), CHIR99021 treatment in HD models suppressed the proteasomal degradation of calpastatin (CAST), and subsequently inhibited calpain activation, a well-established effector of neural death, and Drp1, a driver of mitochondrial fragmentation. Our results established CAST-Drp1 as a druggable signaling axis in HD pathogenesis and highlighted CHIR99021 as a mitochondrial function enhancer and a potential lead for developing HD therapies. Mitochondrial dysfunction is a common hallmark of neurological disorders. Here, the authors identify CHIR99021 as a potent enhancer of mitochondrial function, which improved mitochondrial phenotypes in Huntington's disease models. CHIR99021 was shown to stabilize calpastatin, which suppressed calpain activation and Drp1-induced mitochondrial fragmentation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
12
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
152296654
Full Text :
https://doi.org/10.1038/s41467-021-25651-y