Back to Search Start Over

Molecular Dynamics Simulation of Tolman Length and Interfacial Tension of Symmetric Binary Lennard–Jones Liquid.

Authors :
Kanda, Hideki
Wahyudiono
Goto, Motonobu
Source :
Symmetry (20738994); Aug2021, Vol. 13 Issue 8, p1376, 1p
Publication Year :
2021

Abstract

The Tolman length and interfacial tension of partially miscible symmetric binary Lennard–Jones (LJ) fluids (A, B) was revealed by performing a large-scale molecular dynamics (MD) simulation with a sufficient interfacial area and cutting distance. A unique phenomenon was observed in symmetric binary LJ fluids, where two surfaces of tension existed on both sides of an equimolar dividing surface. The range of interaction ε<subscript>AB</subscript> between the different liquids and the temperature in which the two LJ fluids partially mixed was clarified, and the Tolman length exceeded 3 σ when ε<subscript>AB</subscript> was strong at higher temperatures. The results show that as the temperature or ε<subscript>AB</subscript> increases, the Tolman length increases and the interfacial tension decreases. This very long Tolman length indicates that one should be very careful when applying the concept of the liquid–liquid interface in the usual continuum approximation to nanoscale droplets and capillary phase separation in nanopores. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20738994
Volume :
13
Issue :
8
Database :
Complementary Index
Journal :
Symmetry (20738994)
Publication Type :
Academic Journal
Accession number :
152127604
Full Text :
https://doi.org/10.3390/sym13081376