Back to Search Start Over

Magnetic Resonance Relaxometry for Tumor Cell Density Imaging for Glioma: An Exploratory Study via 11 C-Methionine PET and Its Validation via Stereotactic Tissue Sampling.

Authors :
Kinoshita, Manabu
Uchikoshi, Masato
Tateishi, Souichiro
Miyazaki, Shohei
Sakai, Mio
Ozaki, Tomohiko
Asai, Katsunori
Fujita, Yuya
Matsuhashi, Takahiro
Kanemura, Yonehiro
Shimosegawa, Eku
Hatazawa, Jun
Nakatsuka, Shin-ichi
Kishima, Haruhiko
Nakanishi, Katsuyuki
Source :
Cancers; Aug2021, Vol. 13 Issue 16, p4067, 1p
Publication Year :
2021

Abstract

Simple Summary: To test the hypothesis that quantitative magnetic resonance relaxometry reflects glioma tumor load within tissue and that it can be an imaging surrogate for visualizing non-contrast-enhancing tumors, we investigated the correlation between T1- and T2-weighted relaxation times, apparent diffusion coefficient (ADC) on magnetic resonance imaging, and <superscript>11</superscript>C-methionine (MET) on positron emission tomography (PET). Moreover, we compared T1- and T2-relaxation times and ADC with tumor cell density (TCD) findings obtained via stereotactic image-guided tissue sampling. A T1-relaxation time of >1850 ms but <3200 ms or a T2-relaxation time of >115 ms but <225 ms under 3 T indicated high MET uptake. The stereotactic tissue sampling findings confirmed that the T1-relaxation time of 1850–3200 ms significantly indicated higher TCD while the T2-relaxation time and ADC did not significantly correlate with the stereotactic tissue sampling findings. However, synthetically synthesized tumor load images from the T1- and T2-relaxation maps were able to visualize MET uptake presented on PET. One of the most crucial yet challenging issues for glioma patient care is visualizing non-contrast-enhancing tumor regions. In this study, to test the hypothesis that quantitative magnetic resonance relaxometry reflects glioma tumor load within tissue and that it can be an imaging surrogate for visualizing non-contrast-enhancing tumors, we investigated the correlation between T1- and T2-weighted relaxation times, apparent diffusion coefficient (ADC) on magnetic resonance imaging, and <superscript>11</superscript>C-methionine (MET) on positron emission tomography (PET). Moreover, we compared the T1- and T2-relaxation times and ADC with tumor cell density (TCD) findings obtained via stereotactic image-guided tissue sampling. Regions that presented a T1-relaxation time of >1850 ms but <3200 ms or a T2-relaxation time of >115 ms but <225 ms under 3 T indicated a high MET uptake. In addition, the stereotactic tissue sampling findings confirmed that the T1-relaxation time of 1850–3200 ms significantly indicated a higher TCD (p = 0.04). However, ADC was unable to show a significant correlation with MET uptake or with TCD. Finally, synthetically synthesized tumor load images from the T1- and T2-relaxation maps were able to visualize MET uptake presented on PET. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20726694
Volume :
13
Issue :
16
Database :
Complementary Index
Journal :
Cancers
Publication Type :
Academic Journal
Accession number :
152112161
Full Text :
https://doi.org/10.3390/cancers13164067