Back to Search Start Over

An Improved Machine Learning Technique with Effective Heart Disease Prediction System.

Authors :
Quasim, Mohammad Tabrez
Alhuwaimel, Saad
Shaikh, Asadullah
Asiri, Yousef
Rajab, Khairan
Farkh, Rihem
Al Jaloud, Khaled
Source :
Computers, Materials & Continua; 2021, Vol. 69 Issue 3, p4169-4181, 13p
Publication Year :
2021

Abstract

Heart disease is the leading cause of death worldwide. Predicting heart disease is challenging because it requires substantial experience and knowledge. Several research studies have found that the diagnostic accuracy of heart disease is low. The coronary heart disorder determines the state that influences the heart valves, causing heart disease. Two indications of coronary heart disorder are strep throat with a red persistent skin rash, and a sore throat covered by tonsils or strep throat. This work focuses on a hybrid machine learning algorithm that helps predict heart attacks and arterial stiffness. At first, we achieved the component perception measured by using a hybrid cuckoo search particle swarm optimization (CSPSO) algorithm. With this perception measure, characterization and accuracy were improved, while the execution time of the proposed model was decreased. The CSPSO-deep recurrent neural network algorithm resolved issues that state-of-the-art methods face. Our proposed method offers an illustrative framework that helps predict heart attacks with high accuracy. The proposed technique demonstrates the model accuracy, which reached 0.97 with the applied dataset. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15462218
Volume :
69
Issue :
3
Database :
Complementary Index
Journal :
Computers, Materials & Continua
Publication Type :
Academic Journal
Accession number :
152050701
Full Text :
https://doi.org/10.32604/cmc.2021.015984