Back to Search Start Over

Numerical Simulation of Interaction between Large-Scale Congestion and Vent during the Natural Gas Explosion in a Kitchen.

Authors :
Pang, Lei
Jin, Mengjie
Hu, Qianran
Yang, Kai
Source :
Advances in Civil Engineering; 8/5/2021, p1-20, 20p
Publication Year :
2021

Abstract

The influence of large-scale congestion on a confined natural gas explosion in a typical Chinese kitchen was studied using the computational fluid dynamics technology. It was found that opening the explosion venting surface promotes the development of turbulence, flame propagation velocity, and multipeak overpressure in the explosion flow field. Large-scale congestion can significantly strengthen the influence of the explosion venting surface on the flow field; the congestion and the explosion venting surface have a synergistic effect on the explosion flow field. At the moment of gas explosion, the flow fields in each area of the kitchen exhibit different distribution characteristics. A flow field near small-scale congestion is more likely to produce greater turbulence, combustion rate, and flame speed. The obstruction effect of large-scale congestion perpendicular to the flame propagation direction is dominant. The indoor flame propagation speed and overpressure development speed increase and the peak combustion rate and indoor peak overpressure decrease with an increase in obstacle blockage. Increases in the large-scale volume congestion rate and volume blockage in the kitchen induce changes in the indoor flame propagation mode and increase the external explosion overpressure. This paper investigated the correlation behavior between large-scale congestion and vent surface in a typical Chinese civil kitchen during natural gas explosion process and provided important support for understanding the mechanism of congestion on gas explosion process and the distribution of explosion hazards in a kitchen. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16878086
Database :
Complementary Index
Journal :
Advances in Civil Engineering
Publication Type :
Academic Journal
Accession number :
151756657
Full Text :
https://doi.org/10.1155/2021/2665510