Back to Search Start Over

Design and Fabrication of an Integrated Dual-Channel Thin-Film Filter for the Mid-Infrared.

Authors :
Zhou, Shun
Zhang, Liyu
Guo, Feng
Wu, Chunfang
Xu, Junqi
Zhang, Kaifeng
Li, Kun
Liu, Zheng
Xiao, Xiangguo
Song, Shigeng
Liu, Weiguo
Source :
Coatings (2079-6412); Jul2021, Vol. 11 Issue 7, p803, 1p
Publication Year :
2021

Abstract

Micro-filters fabricated using integration methods is now the trend for multichannel filters in imaging spectrum systems. Traditional multichannel bandpass filters are mainly fabricated separately by multilayered thin films and then glued together. This approach involves the complexity of precision cutting, dicing, and adhesive bonding; therefore, the possibility of miniaturization is quite limited. In this work, a dual channel bandpass thin film filter for the mid-infrared was fabricated by using the lift-off process. The structure of a 4-cavity Fabray–Perot (F-P) type filter was designed and optimized. The bandpass filter over the range 3.55–3.75 µm with full width at half maximum (FWHM) of 274 nm and the bandpass filter over the range 4.85–4.95 µm with FWHM of 246 nm were obtained with a 4.5 µm joint width. The average transmittance of the filters is more than 83.5% and optical density value of the cutoff is 3. The thickness of 3.55–3.75 µm bandpass filter was measured and the thickness error was analyzed. The results show that the thickness error, especially the thickness error of spacer layers, induces the degradations of peak transmission and bandwidth. This kind of mid-infrared filter has important application in space remote sensing, military, and civil fields. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20796412
Volume :
11
Issue :
7
Database :
Complementary Index
Journal :
Coatings (2079-6412)
Publication Type :
Academic Journal
Accession number :
151565712
Full Text :
https://doi.org/10.3390/coatings11070803