Back to Search Start Over

68.9% Efficient GaAs‐Based Photonic Power Conversion Enabled by Photon Recycling and Optical Resonance.

Authors :
Helmers, Henning
Lopez, Esther
Höhn, Oliver
Lackner, David
Schön, Jonas
Schauerte, Meike
Schachtner, Michael
Dimroth, Frank
Bett, Andreas W.
Source :
Physica Status Solidi - Rapid Research Letters; Jul2021, Vol. 15 Issue 7, p1-7, 7p
Publication Year :
2021

Abstract

For solar cells operating under the broad‐band solar spectrum, the photovoltaic conversion efficiency is fundamentally limited by transmission and thermalization losses. For monochromatic light, these losses can be minimized by matching the photon energy and the absorber material's bandgap energy. Furthermore, for high‐crystal‐quality direct semiconductors, radiative recombination dominates the minority carrier recombination. Light‐trapping schemes can leverage reabsorption of thereby internally generated photons. Such photon recycling increases the effective excess carrier concentration, which, in turn, increases photovoltage and consequently conversion efficiency. Herein, a back surface reflector underneath a GaAs/AlGaAs rear‐heterojunction structure leverages photon recycling to effectively reduce radiative recombination losses and therefore boost the photovoltage. At the same time, resonance in the created optical cavity is tailored to enhance near‐bandgap absorption and, thus, minimize thermalization loss. With a thin film process and a combined dielectric–metal reflector, an unprecedented photovoltaic conversion efficiency of 68.9 ± 2.8% under 858 nm monochromatic light at an irradiance of 11.4 W cm−2 is demonstrated. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18626254
Volume :
15
Issue :
7
Database :
Complementary Index
Journal :
Physica Status Solidi - Rapid Research Letters
Publication Type :
Academic Journal
Accession number :
151353240
Full Text :
https://doi.org/10.1002/pssr.202100113