Back to Search Start Over

Polymer Based Triboelectric Nanogenerator for Cost‐Effective Green Energy Generation and Implementation of Surface‐Charge Engineering.

Authors :
Lopez, Diana
Chowdhury, Aminur Rashid
Abdullah, Abu Musa
Sadaf, Muhtasim Ul Karim
Martinez, Isaac
Choudhury, Brishty Deb
Danti, Serena
Ellison, Christopher J.
Lozano, Karen
Uddin, M. Jasim
Source :
Energy Technology; Jul2021, Vol. 9 Issue 7, p1-9, 9p
Publication Year :
2021

Abstract

Performance of triboelectric nanogenerators for harvesting mechanical energy from the ambient environment has been limited by structural complexity, cost‐effectiveness, and mechanical weakness of materials. Herein, a cost‐effective vertical contact separation mode triboelectric nanogenerator using polyethylene (PE) and polycarbonate (PC) in a regular digital versatile disc is reported. This cost‐effective nanogenerator with simplified structures is able to generate an open‐circuit voltage of 215.3 V and short‐circuit current of 80 μA. The effects of the distance of impact and the air gap between the triboelectric layers have also been tested from 3 to 9 cm, and 0.25 to 1 cm, respectively. It is determined that 0.5 cm is the optimal air gap. The nanogenerator is also tested in different real‐life scenarios including stresses produced by a moving car, walking, and a rolling skateboard over the nanogenerator. The surfaces of the triboelectric layers are further modified by surface‐charge engineering which induced a 460% increase in the output power. These tests reveal a significant electrical response and mechanical stability under stress. In summary, this study demonstrates that the relatively inexpensive PE and PC triboelectric pair has the potential to be used for highly efficient, mechanically robust triboelectric nanogenerators. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21944288
Volume :
9
Issue :
7
Database :
Complementary Index
Journal :
Energy Technology
Publication Type :
Academic Journal
Accession number :
151314382
Full Text :
https://doi.org/10.1002/ente.202001088