Back to Search Start Over

Feedback stabilization of a 3D fluid flow by shape deformations of an obstacle.

Authors :
Buttazzo, G.
Casas, E.
de Teresa, L.
Glowinski, R.
Leugering, G.
Trélat, E.
Zhang, X.
Raymond, Jean-Pierre
Vanninathan, Muthusamy
Source :
ESAIM: Control, Optimisation & Calculus of Variations; 6/24/2021, p1-30, 30p
Publication Year :
2021

Abstract

We consider a fluid flow in a time dependent domain Ω<subscript>f</subscript>(t)=Ω\Ω<subscript>s</subscript>(t)̅⊂ℝ<superscript>3</superscript> \begin{equation*}\Omega_f(t)= \Omega\setminus \overline{\Omega_s(t)}\subset {\mathbb R}^3\end{equation*} Ω f (t) = Ω \ Ω s (t) ̅ ⊂ R 3 , surrounding a deformable obstacle Ω<subscript>s</subscript>(t). We assume that the fluid flow satisfies the incompressible Navier-Stokes equations in Ω<subscript>f</subscript>(t), t > 0. We prove that, for any arbitrary exponential decay rate ω > 0, if the initial condition of the fluid flow is small enough in some norm, the deformation of the boundary ∂Ω<subscript>s</subscript>(t) can be chosen so that the fluid flow is stabilized to rest, and the obstacle to its initial shape and its initial location, with the exponential decay rate ω > 0. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
12928119
Database :
Complementary Index
Journal :
ESAIM: Control, Optimisation & Calculus of Variations
Publication Type :
Academic Journal
Accession number :
151306101
Full Text :
https://doi.org/10.1051/cocv/2021059