Back to Search Start Over

Functional Characterization of Two Novel Mutations in SCN5A Associated with Brugada Syndrome Identified in Italian Patients.

Authors :
Balla, Cristina
Conte, Elena
Selvatici, Rita
Marsano, Renè Massimiliano
Gerbino, Andrea
Farnè, Marianna
Blunck, Rikard
Vitali, Francesco
Armaroli, Annarita
Brieda, Alessandro
Liantonio, Antonella
De Luca, Annamaria
Ferlini, Alessandra
Rapezzi, Claudio
Bertini, Matteo
Gualandi, Francesca
Imbrici, Paola
Source :
International Journal of Molecular Sciences; Jun2021, Vol. 22 Issue 12, p6513, 1p
Publication Year :
2021

Abstract

Background. Brugada syndrome (BrS) is an autosomal dominantly inherited cardiac disease characterized by "coved type" ST-segment elevation in the right precordial leads, high susceptibility to ventricular arrhythmia and a family history of sudden cardiac death. The SCN5A gene, encoding for the cardiac voltage-gated sodium channel Nav1.5, accounts for ~20–30% of BrS cases and is considered clinically relevant. Methods. Here, we describe the clinical findings of two Italian families affected by BrS and provide the functional characterization of two novel SCN5A mutations, the missense variant Pro1310Leu and the in-frame insertion Gly1687_Ile1688insGlyArg. Results. Despite being clinically different, both patients have a family history of sudden cardiac death and had history of arrhythmic events. The Pro1310Leu mutation significantly reduced peak sodium current density without affecting channel membrane localization. Changes in the gating properties of expressed Pro1310Leu channel likely account for the loss-of-function phenotype. On the other hand, Gly1687_Ile1688insGlyArg channel, identified in a female patient, yielded a nearly undetectable sodium current. Following mexiletine incubation, the Gly1687_Ile1688insGlyArg channel showed detectable, albeit very small, currents and biophysical properties similar to those of the Nav1.5 wild-type channel. Conclusions. Overall, our results suggest that the degree of loss-of-function shown by the two Nav1.5 mutant channels correlates with the aggressive clinical phenotype of the two probands. This genotype-phenotype correlation is fundamental to set out appropriate therapeutical intervention. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
22
Issue :
12
Database :
Complementary Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
151140577
Full Text :
https://doi.org/10.3390/ijms22126513