Back to Search Start Over

Modelling Turbine Acoustic Impedance.

Authors :
Brind, James
Pullan, Graham
Source :
International Journal of Turbomachinery, Propulsion & Power; Jun2021, Vol. 6 Issue 2, p1-12, 12p
Publication Year :
2021

Abstract

We quantify the sensitivity of turbine acoustic impedance to aerodynamic design parameters. Impedance boundary conditions are an influential yet uncertain parameter in predicting the thermoacoustic stability of gas turbine combustors. We extend the semi-actuator disk model to cambered blades, using non-linear time-domain computations of turbine vane and stage cascades with acoustic forcing for validation data. Discretising cambered aerofoils into multiple disks improves reflection coefficient predictions, reducing error by up to an order of magnitude compared to a flat plate assumption. A parametric study of turbine stage designs using the analytical model shows acoustic impedance is a weak function of degree of reaction and polytropic efficiency. The design parameter with the strongest influence is flow coefficient, followed by axial velocity ratio and Mach number. We provide the combustion engineer with improved tools to predict impedance boundary conditions, and suggest thermoacoustic stability is most likely to be compromised by change in turbine flow coefficient. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2504186X
Volume :
6
Issue :
2
Database :
Complementary Index
Journal :
International Journal of Turbomachinery, Propulsion & Power
Publication Type :
Academic Journal
Accession number :
151117304
Full Text :
https://doi.org/10.3390/ijtpp6020018