Back to Search Start Over

Mocking the u-plane integral.

Authors :
Korpas, Georgios
Manschot, Jan
Moore, Gregory W.
Nidaiev, Iurii
Source :
Research in the Mathematical Sciences; 6/24/2021, Vol. 8 Issue 3, p1-42, 42p
Publication Year :
2021

Abstract

The u-plane integral is the contribution of the Coulomb branch to correlation functions of N = 2 gauge theory on a compact four-manifold. We consider the u-plane integral for correlators of point and surface observables of topologically twisted theories with gauge group SU (2) , for an arbitrary four-manifold with (b 1 , b 2 +) = (0 , 1) . The u-plane contribution equals the full correlator in the absence of Seiberg–Witten contributions at strong coupling, and coincides with the mathematically defined Donaldson invariants in such cases. We demonstrate that the u-plane correlators are efficiently determined using mock modular forms for point observables, and Appell–Lerch sums for surface observables. We use these results to discuss the asymptotic behavior of correlators as function of the number of observables. Our findings suggest that the vev of exponentiated point and surface observables is an entire function of the fugacities. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
25220144
Volume :
8
Issue :
3
Database :
Complementary Index
Journal :
Research in the Mathematical Sciences
Publication Type :
Academic Journal
Accession number :
151066442
Full Text :
https://doi.org/10.1007/s40687-021-00280-5