Back to Search Start Over

A streaming edge sampling method for network visualization.

Authors :
Ponciano, Jean R.
Linhares, Claudio D. G.
Rocha, Luis E. C.
Faria, Elaine R.
Travençolo, Bruno A. N.
Source :
Knowledge & Information Systems; Jul2021, Vol. 63 Issue 7, p1717-1743, 27p
Publication Year :
2021

Abstract

Visualization strategies facilitate streaming network analysis by allowing its exploration through graphical and interactive layouts. Depending on the strategy and the network density, such layouts may suffer from a high level of visual clutter that hides meaningful temporal patterns, highly active groups of nodes, bursts of activity, and other important network properties. Edge sampling improves layout readability, highlighting important properties and leading to easier and faster pattern identification and decision making. This paper presents Streaming Edge Sampling for Network Visualization–SEVis, a streaming edge sampling method that discards edges of low-active nodes while preserving a distribution of edge counts that is similar to the original network. It can be applied to a variety of layouts to enhance streaming network analyses. We evaluated SEVis performance using synthetic and real-world networks through quantitative and visual analyses. The results indicate a higher performance of SEVis for clutter reduction and pattern identification when compared with other sampling methods. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02191377
Volume :
63
Issue :
7
Database :
Complementary Index
Journal :
Knowledge & Information Systems
Publication Type :
Academic Journal
Accession number :
150974724
Full Text :
https://doi.org/10.1007/s10115-021-01571-7