Back to Search Start Over

Spent fuel characteristics for thorium‐uranium recycle in fluoride‐salt‐cooled solid‐fuel fast reactor.

Authors :
Peng, Yu
Zhu, Guifeng
Zou, Yang
Niu, Miaomiao
Xu, Hongjie
Source :
International Journal of Energy Research; 6/25/2021, Vol. 45 Issue 8, p12413-12425, 13p
Publication Year :
2021

Abstract

Summary: Fluoride‐salt‐cooled solid‐fuel fast reactor (LSFR) with thorium‐based fuel could complete a self‐sustaining core that fulfills long‐term energy demands. This paper further investigated the LSFR core sustainability of breeding thorium and the spent fuel characteristics for closed fuel cycle. Two fuel recycle strategies were proposed in this paper, including U recycling and U/Pu/MA recycling, to evaluate the physical effects caused by these recycling some highly radiotoxic and heat producing minor actinides. Based on the two fuel management strategies, the sustainability of breeding thorium and the spent fuel characteristics from the 0th cycle core to the 8th cycle core were assessed, including radioactivity, radiotoxicity, and decay heat. It was found that both recycle strategies accomplished good breeding performance and reduced the 233U fuel inventory, implying that recycling nuclides could partially replace 233U. The U/Pu/MA recycling scheme possessed slightly better advantages in lower 233U loading and breeding performance, but this scheme accumulated more transuranium elements with cycle burnup because the LSFR core could not transmute MA for its relatively soft fast energy spectrum. In spite of this, the level of radioactivity, radiotoxicity, and decay heat for the discharge fuel in the 8th cycle core was either lower than or comparable to that of traditional PWR. It is worthwhile mentioning that between 1000 and 100 000 years the radioactivity, radiotoxicity, and decay heat production tend to grow again, which might require sophisticated storage design for LSFR core with thorium‐based fuel in the future. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0363907X
Volume :
45
Issue :
8
Database :
Complementary Index
Journal :
International Journal of Energy Research
Publication Type :
Academic Journal
Accession number :
150774639
Full Text :
https://doi.org/10.1002/er.6619