Back to Search Start Over

MI_DenseNetCAM: A Novel Pan-Cancer Classification and Prediction Method Based on Mutual Information and Deep Learning Model.

Authors :
Wang, Jianlin
Dai, Xuebing
Luo, Huimin
Yan, Chaokun
Zhang, Ge
Luo, Junwei
Source :
Frontiers in Genetics; 6/3/2021, Vol. 11, p1-13, 13p
Publication Year :
2021

Abstract

The Pan-Cancer Atlas consists of original sequencing data from various sources, provides the opportunity to perform systematic studies on the commonalities and differences between diverse cancers. The analysis for the pan-cancer dataset could help researchers to identify the key factors that could trigger cancer. In this paper, we present a novel pan-cancer classification method, referred to MI_DenseNetCAM, to identify a set of genes that can differentiate all tumor types accurately. First, the Mutual Information (MI) was utilized to eliminate noise and redundancy from the pan-cancer datasets. Then, the gene data was further converted to 2D images. Next, the DenseNet model was adopted as a classifier and the Guided Grad-CAM algorithm was applied to identify the key genes. Extensive experimental results on the public RNA-seq data sets with 33 different tumor types show that our method outperforms the other state-of-the-art classification methods. Moreover, gene analysis further demonstrated that the genes selected by our method were related to the corresponding tumor types. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16648021
Volume :
11
Database :
Complementary Index
Journal :
Frontiers in Genetics
Publication Type :
Academic Journal
Accession number :
150708323
Full Text :
https://doi.org/10.3389/fgene.2021.670232