Back to Search Start Over

Determination of Mining-Induced Changes in Hydrogeological Parameters of Overburden Aquifer in a Coalfield, Northwest China: Approaches Using the Water Level Response to Earth Tides.

Authors :
Xu, Qingyu
Wang, Guangcai
Liang, Xiangyang
Qu, Shen
Shi, Zheming
Wang, Xianbin
Source :
Geofluids; 5/24/2021, p1-13, 13p, 1 Illustration, 3 Charts, 6 Graphs, 1 Map
Publication Year :
2021

Abstract

The determination of changes in hydrogeological properties (e.g., permeability and specific storage) of aquifers disturbed by mining activity is significant to groundwater resource and ecological environment protection in coal mine areas. However, such parameters are difficult to continuously measure in situ using conventional hydrogeological methods, and their temporal changes associated with coal mining are not well understood. The response of well water level to Earth tides provides a unique probe to determine the in situ hydrogeological parameters and their variations. In this study, the tidal responses of well water level were employed to characterize the changes in hydrogeological parameters of the overburden aquifer induced by longwall mining in a coalfield, northwest China. Based on the long-term hourly recorded water level data, two analytical models were used to determine the temporal changes of permeability and specific storage of the overburden aquifer. The results showed that the hydrogeological parameters changed with the longwall coal face advance. When the longwall coal face approached the wells, the aquifer permeability increased several to dozens of times, and the response distance ranged from 80 m to 300 m. The specific storage decreased before the coal face reached wells and recovered after the coal face passed. The results of this study indicate that the hydrogeological parameter changes induced by coal mining are related to the location of the well relative to the coal face and the stress distribution in the overburden aquifer. This study revealed the changes in permeability and specific storage associated with the mining disturbance which could have great significance for quantitative assessment of the impact of mining on overburden aquifer. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14688115
Database :
Complementary Index
Journal :
Geofluids
Publication Type :
Academic Journal
Accession number :
150470175
Full Text :
https://doi.org/10.1155/2021/5516997