Back to Search Start Over

Lithospheric mantle refertilization by DMM-derived melts beneath the Cameroon Volcanic Line—a case study of the Befang xenolith suite (Oku Volcanic Group, Cameroon).

Authors :
Tedonkenfack, Sylvin S. T.
Puziewicz, Jacek
Aulbach, Sonja
Ntaflos, Theodoros
Kaczmarek, Mary-Alix
Matusiak-Małek, Magdalena
Kukuła, Anna
Ziobro, Małgorzata
Source :
Contributions to Mineralogy & Petrology; May2021, Vol. 176 Issue 5, p1-18, 18p
Publication Year :
2021

Abstract

The origin and evolution of subcontinental lithospheric mantle (SCLM) are important issues of Earth's chemical and physical evolution. Here, we report detailed textural and chemical analyses on a mantle xenolith suite from Befang (Oku Volcanic Group, Cameroon Volcanic Line), which represents a major tectono-magmatic structure of the African plate. The samples are sourced from spinel-facies mantle and are dominated by lherzolites. Their texture is cataclastic to porphyroclastic, and foliation defined by grain-size variation and alignment of spinel occurs in part of peridotites. Spinel is interstitial and has amoeboidal shape. Clinopyroxene REE patterns are similar to those of Depleted MORB Mantle (DMM) except LREEs, which vary from depleted to enriched. The A-type olivine fabric occurs in the subset of one harzburgite and 7 lherzolites studied by EBSD. Orthopyroxene shows deformation consistent with olivine. The fabric of LREE-enriched clinopyroxene is equivalent to those of orthopyroxene and olivine, whereas spinel and LREE-depleted clinopyroxene are oriented independently of host rock fabric. The textural, chemical and thermobarometric constraints indicate that the Befang mantle section was refertilised by MORB-like melt at pressures of 1.0–1.4 GPa and temperatures slightly above 1200–1275 °C. The olivine-orthopyroxene framework and LREE-enriched clinopyroxene preserve the protolith fabric. In contrast, the LREE-depleted clinopyroxene, showing discordant deformation relative to the olivine-orthopyroxene protolith framework, and amoeboidal spinel crystallized from the infiltrating melt. The major element and REEs composition of minerals forming the Befang peridotites indicate subsequent reequilibration at temperatures 930–1000 °C. This was followed by the formation of websterite veins in the lithospheric mantle, which can be linked to Cenozoic volcanism in the Cameroon Volcanic Line that also brought the xenoliths to the surface. This study therefore supports the origin of fertile SCLM via refertilization rather than by extraction of small melt fractions, and further emphasizes the involvement of depleted melts in this process. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00107999
Volume :
176
Issue :
5
Database :
Complementary Index
Journal :
Contributions to Mineralogy & Petrology
Publication Type :
Academic Journal
Accession number :
150453056
Full Text :
https://doi.org/10.1007/s00410-021-01796-3