Back to Search
Start Over
Knots, links, and long-range magic.
- Source :
- Journal of High Energy Physics; Apr2021, Vol. 2021 Issue 4, p1-33, 33p
- Publication Year :
- 2021
-
Abstract
- We study the extent to which knot and link states (that is, states in 3d Chern-Simons theory prepared by path integration on knot and link complements) can or cannot be described by stabilizer states. States which are not classical mixtures of stabilizer states are known as "magic states" and play a key role in quantum resource theory. By implementing a particular magic monotone known as the "mana" we quantify the magic of knot and link states. In particular, for SU(2)<subscript>k</subscript> Chern-Simons theory we show that knot and link states are generically magical. For link states, we further investigate the mana associated to correlations between separate boundaries which characterizes the state's long-range magic. Our numerical results suggest that the magic of a majority of link states is entirely long-range. We make these statements sharper for torus links. [ABSTRACT FROM AUTHOR]
- Subjects :
- CHERN-Simons gauge theory
MAGIC
QUANTUM theory
TOPOLOGICAL fields
TORUS
Subjects
Details
- Language :
- English
- ISSN :
- 11266708
- Volume :
- 2021
- Issue :
- 4
- Database :
- Complementary Index
- Journal :
- Journal of High Energy Physics
- Publication Type :
- Academic Journal
- Accession number :
- 150403191
- Full Text :
- https://doi.org/10.1007/JHEP04(2021)090